skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "IV, J. R. Cheshire"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present estimates of line-of-sight distortion fields derived from the 95 and 150 GHz data taken by BICEP2, BICEP3, and the Keck Array up to the 2018 observing season, leading to cosmological constraints and a study of instrumental and astrophysical systematics. Cosmological constraints are derived from three of the distortion fields concerning gravitational lensing from large-scale structure, polarization rotation from magnetic fields or an axion-like field, and the screening effect of patchy reionization. We measure an amplitude of the lensing power spectrum A L ϕ ϕ = 0.95 ± 0.20 . We constrain polarization rotation, expressed as the coupling constant of a Chern–Simons electromagnetic termg≤ 2.6 × 10−2/HI, whereHIis the inflationary Hubble parameter, and an amplitude of primordial magnetic fields smoothed over 1 MpcB1Mpc≤ 6.6 nG at 95 GHz. We constrain the rms of optical depth fluctuations in a simple “crinkly surface” model of patchy reionization, findingAτ< 0.19 (2σ) for the coherence scale ofLc= 100. We show that all of the distortion fields of the 95 and 150 GHz polarization maps are consistent with simulations including lensed ΛCDM, dust, and noise, with no evidence for instrumental systematics. In some cases, theEBandTBquadratic estimators presented here are more sensitive than our previous map-based null tests at identifying and rejecting spuriousB-modes that might arise from instrumental effects. Finally, we verify that the standard deprojection filtering in the BICEP/Keck data processing is effective at removing temperature to polarization leakage. 
    more » « less